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Single Point Energies
And

Geometry Optimizations
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Single Point Energy Calculations

PSolution of Schrödinger Equation for
Molecule with Specified Geometric Structure
< E and geometry
< ν and thermodynamic properties
< NMR
< Electronic distributions
< Other static properties

PValidity
< Reasonable structure
< Choice of level
< Choice of basis set
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PPurpose
< Only “affordable” calculation
< Starting point for optimization
< Estimate time of optimization
< Calculate specific molecular properties after

optimization
< Calculate accurate values of E and related

properties at a higher level of theory following
lower level optimization
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Potential Energy Surfaces (PES)
E and other properties are function of geometry

PMathematical relationship of E as a function
of structure

PSurface has as many dimensions as number
of internal degrees of freedom in molecule
< Diatomic molecule AB

– rAB

< Nonlinear triatomic molecule ABC
– rAB and rBC (unless identical)
– A-B-C bond angle
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Diatomic Molecule PES
Two-dimensional Potential Energy Well with Bond Length

as Variable

r(OH-) = 0.99 Å
(0.9628)

r(OH) = 1.00 Å
(0.9706)

r(OH+) = 1.06 Å
(1.0289)

B88-LYP/DZVP
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Triatomic Molecule PES
Surface with Bond Length and Bond Angle as Variables

PM3

r(OH) = 0.950 Å
(0.958)

H-O-H = 107.7E
(104.5E)
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PES Features

PMinima
< Bottom of “Valley” on PES

– Changing any geometric parameter increases E
< Equilibrium structures of molecule

– Different conformers
– Structural isomers
– Reactant and product
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Global minimum:
(lowest point on PES)

Local minimum:
(lowest point in a
limited region of PES)
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PMaxima
< Top of “mountain” on PES

– Changing any geometric parameter decreases E

PSaddle Point
< Maximum for one molecular parameter and

minimum for another
– Transition structure between two equilibrium structures



10

Saddle Point
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Geometry Optimization
PLocating Extremum of PES
< Minimization gives equilibrium structure(s)
< Saddle point corresponds to transition structure

PCalculus at Extremum for Multidimensional
Function
< Gradient = gi = ME/Mvi = 0

– Force = -(gradient) = 0
– “stationary point” is location on PES where forces = 0

< Force constant = M2E/Mvi
2

– Specifies “curvature” of surface at point
– All > 0 at stationary point
– All > 0 except one < 0 at (1st order) saddle point
– “Hessian” is matrix of second derivatives
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Input
Calculate
Initial E

Analysis of
Minimum

Variation of
Geometry

Results
Calculate
Gradients

and Hessian
Solve SCF
Equations

Calculate
Integrals

Calculate
Integrals
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PAnalysis
< Convergence criteria

– Forces = 0 or less than chosen cut-off value
– Next structure change is very small or below chosen cut-

off value
– Often additional criteria are used

< Optimization methods for structure change based
on decrease in E
– Use gradient and force constant values
– More later...
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POptimization Results
< Was a minimum determined?

– Check by doing a single point calculation of vibrational
frequencies (all positive)

< Was a global minimum determined?
– Check PES map
– More later...

< Was a saddle point determined?
– Check by doing a single point calculation of vibrational

frequencies (all positive except one is
negative/imaginary)
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Optimization Methods
“Simple” Method

PProcedure
< Minimize E with respect to only one variable

holding all others constant
< Change variable to optimum value
< Repeat minimization with respect to a second

variable holding all others constant
< Change second variable to optimum value
< Continue for each variable
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PProblems
< Variables are not independent

– Linear molecules like acetylene are often problems
< Several cycles are needed
< “Expensive” for large molecules

P “Real” methods
< Use all variables
< Three general approaches: SD, CG, NR
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Optimization Methods
Steepest Descent (SD)

PChange coordinates in direction opposite the
maximum of gradient using a unit vector si =
-gi/*gi*

PLine search method for distance
< Find 3 points such that inner point is lower in E

than outer points
< Thus at least one minimum lies between outer

points
< Iterate decreasing distance
< Recalculate gi+1 and repeat
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PAdvantages of SD
< Always locate (local) minimum

PProblems of SD
< gi+1 is perpendicular to gi

– Lose any further E lowering possible by gi
– Path oscillates around minimum path

< Rate of convergence decreases near minimum
< Undesireable behavior in long, narrow valley
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PModifications of SD
< Fit 3 points to function

– Differentiate to find minimum
< Arbitrary step size

– Start with predetermined value or value proportional to gi
– Calculate E at new position
– If E is less

– Increase step size
– Calculate E at new position
– Repeat until E increases

– If E is greater or increases
– Decrease step size
– Calculate E at new position
– Iterate
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Optimization Methods
Conjugate Gradient Method (CG)

PMixture of current gradient and previous
search direction

PProcedure
< First step: SD
< Subsequent steps: vi+1 = -gi+1 + γi+1 vi

– Fletcher-Reeves: γi+1 = (gi+1 C gi+1)/(gi C gi)
– Polak-Ribiere (common): γi+1 = [(gi+1 - gi) C gi+1]/(gi C gi)
– Hestenes-Stifel: γi+1 = [(gi+1 - gi) C gi+1]/[vi C (gi+1 - gi)]
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PAdvantages of CG
< Better convergence
< Always locate (local) minimum

PProblems of CG
< Require additional computer resources to store gi

and gi+1
< Expense scales as N2
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Optimization Methods
Newton-Raphson (NR)

P Includes Hessian
PAdvantages
< Locates minima and saddle points
< Convergence is second order near stationary

point
PProblems
< Control of step size
< Calculation of Hessian required

PSeveral variations of NR
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Global Minimum

POptimization Results
< Above methods locate the “nearest” minimum

(local?)
< Conformers and transition structures are related

to local minima and saddle points
< Molecular properties are related to global

minimum--the most stable structure
< Several approaches to finding the global minimum

– NO Guarantees!!!
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Global Minimum Methods
Grid Search

PSimple
< Calculate all possible energies
< Prepare energy map or table
< Choose best structure

PProblems
< Number of minima increases exponentially with

the number of variables
< Not practical for large or biomolecules

– Build structures from optimized fragments
– Optimize portions of molecule
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Example: CH3CH2CH2CH3

PM3
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Example: CH3(CH2)n+1CH3

n = 1 N = 31 = 3 t = 3 s

n = 2 N = 32 = 9 t = 9 s

n = 5 N = 35 = 243 t = ~4 min

n = 10 N = 310 = 59 k t = ~16 h

n = 15 N = 315 = 14 M t = ~160 d
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Global Minimum Methods
Other

PMonte Carlo
< Usually start at a minimum
< Randomly change one or several angles or bond

lengths to generate new geometry
< Calculate E

– If E is lower, accept new geometry
– If E is greater, retain or reject based on a Boltzmann

distribution related to the energy change and T
< Many variations
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PMolecular Dynamics
< Based on Newton’s equations of motion for atoms
< Molecule overcomes barrier between minima if

kinetic energy is great enough
– Similar to climbing out a valley over a mountain

< Kinetic energy is proportional to T
– Use elevated temperatures (600 - 1200 K)
– High temperatures reduce chance of trapping molecule

in a local minimum
< Essentially searches PES in the region of the

starting minimum
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PSimulated Annealing
< Molecular dynamics variation
< Start with high T (2000 - 3000 K)
< Reduce T

– Molecule trapped in a minimum
– Similar to playing roulette
– Very slow cooling might give global minimum

– Repeat to get many results
– Choose best

PGenetic Algorithm
< Use several low energy structures as “parents” to

generate “off spring” that might be better
PDistance Geometry
< Based on establishing minimum and maximum

distances between all pairs of atoms


